Check for updates

Blood 142 (2023) 1001-1003

The 65th ASH Annual Meeting Abstracts

ORAL ABSTRACTS

637.MYELODYSPLASTIC SYNDROMES - CLINICAL AND EPIDEMIOLOGICAL

TP53 Gene allelic State in Myelodysplastic Syndromes (MDS) with Isolated 5q Deletion

Julia Montoro¹, Laura Palomo², Claudia Haferlach, MD³, Pamela Acha⁴, Onyee Chan, MD⁵, Victor Navarro Garces⁶, Yasuo Kubota, MDPhD⁷, Felicitas Schulz⁸, Manja Meggendorfer, PhD⁹, Robert Briski, MD¹⁰, Najla H Al Ali, MS⁵, Blanca Xicoy, PhD¹¹, Felix Lopez, MD¹², Pablo Vidal¹³, Francesc Bosch, MD PhD¹, Teresa González, PhD¹⁴, Lea Naomi Eder¹⁵, Andres Jerez, MD PhD^{16,17}, Hwei-Fang Tien, MD PhD¹⁸, Valeria Santini¹⁹, Teresa Bernal Del Castillo, MDPhD²⁰, Esperanza Such, PhD²¹, Yu-Hung Wang, MD^{22,23}, Anne Sophie Kubasch²⁴, Uwe Platzbecker, MD²⁵, Detlef Haase, MDPhD²⁶, Maria Diez-Campelo, MD PhD²⁷, Matteo Giovanni Della Porta, MD²⁸, Guillermo Garcia-Manero, MD¹⁰, Daniel H Wiseman, MBBChir, FRCPath, MRCP, PhD²⁹, Ulrich Germing³⁰, Jaroslaw P. Maciejewski, MD, PhD, FACP³¹, Rami S. Komrokji, MD⁵, Francesc Sole¹¹, Torsten Haferlach, MD PhD⁹, David Valcarcel¹ ¹Department of Hematology, University Hospital Vall d'Hebron, Barcelona, Spain ²Experimental Hematology Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain ³MLL Munich Leukemia Laboratory, Inning am Ammersee, Germany ⁴ Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain ⁵Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL ⁶Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain ⁷ Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Beachwood, OH ⁸ Department of Hematology, University Hospital of Düsseldorf, Düsseldorf, Germany ⁹MLL Munich Leukemia Laboratory, Munich, Germany ¹⁰Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX ¹¹ Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain ¹²Department of Hematology, Hospital del Mar, Barcelona, Spain ¹³Spanish Group of Myelodysplastic Syndromes (GESMD), Spain, Spain ¹⁴ University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Department of Hematology - Hospital Universitario de Salamanca, Salamanca, Spain ¹⁵Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Georg-August- University, Göttingen, Germany ¹⁶Hematology Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain ¹⁷ Hospital Morales Meseguer, Murcia, ESP ¹⁸Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei, Taiwan ¹⁹MDS Unit, Hematology, University of Florence, AOUC, Florence, Italy ²⁰ Servicio de Hematología, Hospital Universitario Central de Asturias Instituto de Investigación del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, (IUOPA), Oviedo, Spain ²¹Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain ²²Department of Internal Medicine, Fra-Eastern Memorial Hospital, Taipei, Taiwan ²³ Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom ²⁴Department of Hematology, University Hospital of Leipzig, Dresden, Germany ²⁵Department of Hematology, University Hospital of Leipzig, Leipzig, Germany ²⁶Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Georg-August- University, Goettingen, Germany ²⁷ Department of Hematology, Salamanca-IBSAL University Hospital, Salamanca, Spain ²⁸Humanitas Clinical and Research Center - IRCCS, Milan, Italy ²⁹ Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom ³⁰Department of Hematology, Oncology and Clinical Immunology, Universitatsklinik Dusseldorf, Dusseldorf, Germany

³¹Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH

Background & aim: The mutational status of *TP53* gene is a significant prognostic factor in MDS, with two-thirds of patients harboring *TP53* multihit alterations which are associated with poor outcomes. Approximately 20% of patients with MDS with isolated 5q deletion (MDS-del5q) exhibit *TP53* aberrations, though their characteristics and prognostic impact have not been fully elucidated. In this study, we aimed to analyze the characteristics and impact of *TP53* allelic state in patients with MDS-del5q.

Methods: We conducted an international multicenter study in *de novo* MDS-del5q patients according to WHO 2017 classification. Clinical and biological characteristics, including the genetic profile were collected at diagnosis. Genetic profiling included conventional G-banding, *TP53* deletion by FISH and/or SNP-arrays (for *TP53* deletion and copy number neutral loss of heterozygosity). Also, the presence of mutations in myeloid-related genes was assessed by NGS or Sanger. Variant filtering and categorization were performed according to the Spanish Guidelines. Patients were classified as TP53 wild-type (TP53-wt), TP53-monoallelic, and TP53-multihit as proposed by Bernard *et al.* 2020. Clinical and molecular variables were evaluated for associations with acute myeloid leukemia (AML) evolution and overall survival (OS). In addition, a prognostic model to predict risk of AML evolution was developed using variables selected by the LASSO-cox method with minimum lambda. To calculate the points for each variable, a multivariate competitive risk model (Fine-Gray model) was fitted. Evolution to AML was used as the event and death as the competitive event. Statistical analysis was performed by R (4.2.2).

Results: We included 682 patients with MDS-del5q (Table 1). Median follow-up was 66.8 months (CI95% 61.6-75.2). *TP53* mutations were evaluated by NGS in 92.2% (n=629) and by Sanger in 7.8% (n=53) of patients. Overall, 18.7% (n=128) of MDS-del5q presented *TP53* mutations. After integrating mutational data (FISH and SNP-arrays), 72.7% (n=93) of *TP53*-mutated patients were classified as *TP53*-monoallelic, whereas 27.3% (n=31) as *TP53*-multihit (4.5% of the whole cohort). Other recurrent mutations were *SF3B1* (21%), *DNMT3A* (18%), *TP53* (18%), *TET2* (14%), *ASXL1* (10%), *CSNK1A1* (6%) and *JAK2* (6%). Only bone marrow blasts differ between the *TP53*-mutated groups (p=0.031). Furthermore, only gender and VAF were different between *TP53*-monoallelic and *TP53*-multihit, being the number and type of co-occurring mutations similar among all subgroups (Table 1).

Median OS of the whole cohort was 73.8 months (Cl95% 63.7-83.4), and 77.3 months (Cl95% 66.5-85.3) for MDS-del5q *TP53*wt and 104 months (Cl95% 56.9-89.4) for MDS-del5q *TP53*-mutated (p=0.3). Similarly, there was no significant differences in the risk to AML evolution between *TP53*-wt and *TP53*-mutated patients (AML evolution at 60 months of 19.9% and 29.7%, respectively; p=0.307). Of note, however, the *TP53*-mutated patients (AML evolution at 60 months of 19.9% and 29.7%, respectively; p=0.307). Of note, however, the *TP53*-multihit group presented worse prognosis compared to *TP53*-monoallelic and *TP53*-wt patients (median OS of 55.2, 73.2 and 77.3 months, and AML evolution at 60 months of 40.4%, 25.5% and 19.9% in *TP53*-multihit, *TP53*-monoallelic and *TP53*-wt MDS-del5q) [Figure 1]. Interestingly, *TP53*-monoallelic MDS with a *TP53* VAF >20% showed similar prognosis to *TP53*-multihit patients (median OS of 43.7 and 55.2 months, and AML evolution at 60 months of 36.7% and 40.4%, respectively).

Finally, a risk score (MDS-del5q score) for AML evolution was developed with five variables, each assigned a different weight based on the regression coefficients: additional chromosomal abnormality, 2 points; *TP53*-multihit, 2 points; BM blast >2%, 2 points; platelets $\leq 100 \times 10^{9}$ /L, 3 points, and *SF3B1*-mutation, 1 point. Three risk-groups were defined: Low, intermediate, and high-risk for $\leq 1, 2, \text{ or } \geq 3$ points, respectively, with an AML evolution at 60 months of 11.5%, 23.3% and 43.7%, respectively; p <0.05)

Conclusions: In contrast to previous findings in MDS without del5q, our series of MDS-del5q, the longest described to date, reveals that multihit *TP53* status is uncommon in MDS-del5q. However, multihit alterations have prognostic significance in this subgroup. Finally, the MDS-del5q score allows to stratify patients into three distinct risk groups for AML evolution. These findings could hold considerable implications for guiding treatment decisions.

Disclosures Haferlach: MLL Munich Leukemia Laboratory: Current Employment, Other: Equity Ownership. Meggendorfer: MLL Munich Leukemia Laboratory: Current Employment. Jerez: GILEAD: Research Funding; Novartis: Consultancy; Astrazeneca: Research Funding; BMS: Consultancy. Santini: CTI: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Otsuka: Membership on an entity's Board of Directors or advisory committees; Servier: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Janssen: Other: Travel support; Gilead: Membership on an entity's Board of Directors or advisory committees; Geron: Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees. Platzbecker: Silence Therapeutics: Consultancy, Honoraria, Research Funding; Merck: Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; medical writing support, Research Funding; AbbVie: Consultancy; Novartis: Consultancy, Honoraria, Research Funding; Geron: Consultancy, Research Funding; Syros: Consultancy, Honoraria, Research Funding; Servier: Consultancy, Honoraria, Research Funding; Jazz: Consultancy, Honoraria, Research Funding; Curis: Consultancy, Research Funding; Janssen Biotech: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Celgene: Honoraria; MDS Foundation: Membership on an entity's Board of Directors or advisory committees; Fibrogen: Research Funding; Roche: Research Funding; BeiGene: Research Funding; BMS: Research Funding. Diez-Campelo: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors

ORAL ABSTRACTS

Session 637

or advisory committees; BMS/Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory board fees; Gilead Sciences: Other: Travel expense reimbursement; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees. Della Porta: Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees. Garcia-Manero: Bristol Myers Squibb: Other: Medical writing support, Research Funding; Genentech: Research Funding; AbbVie: Research Funding. Maciejewski: Regeneron: Consultancy, Honoraria; Alexion: Membership on an entity's Board of Directors or advisory committees; Omeros: Consultancy; Novartis: Honoraria, Speakers Bureau. Komrokji: BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie, CTI biopharma, Jazz, Pharma Essentia, Servio: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Geron: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees; Rigel, Taiho, DSI: Honoraria, Membership on an entity's Board of Directors or advisory committees. Haferlach: MLL Munich Leukemia Laboratory: Current Employment, Other: Equity Ownership. Valcarcel: Grifols: Speakers Bureau; SOBI: Consultancy, Speakers Bureau; Jazz Pharmaceuticals: Consultancy, Other: Travel expense reimbursement, Speakers Bureau; Takeda: Consultancy; Novartis: Consultancy, Other: Travel expense reimbursement, Speakers Bureau; GSK: Consultancy, Other: Travel expense reimbursement; Amgen: Consultancy, Other: travel expense reimbursement, Speakers Bureau; BMS/Celgene: Consultancy, Other: Travel expense reimbursement, Speakers Bureau; Kyte: Consultancy, Speakers Bureau; Pfizer: Consultancy, Other: Travel expense reimbursement, Speakers Bureau; MSD: Consultancy, Speakers Bureau; Agios: Speakers Bureau; Gebro Pharma: Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; Jansen: Speakers Bureau; Astellas Pharma: Consultancy, Speakers Bureau.

Verlable	Total n= 682	TP53-wt (#= 554; 83.2%)	TP53-metated (++ 128; 18.7%)	TPS3-monosilisis: (n= 53; 72.7%)	1753-ma(10)1 (n= 33; 27, 3%)	(TPS3-set us mutated)	p (mancalieli va multihit)
Age, years (p25/p75)	74 (66-80)	74 (95-80)	73 (66-79)	75 (68-80)	72 (66-77)	0.729	0.571
Sex, male	26.8%	27.3%	25%	11.15	45.2%	0.603	0.003
Hb, g/dl (p25/975)	9.2 (8.1-10.4)	9.2 (8.1-10.3)	9.2 (8.1-10.5)	8.9 (7.9-00.3)	9.9 (8.8-11)	0.808	0.117
Leuk, x10%L (p35/p75)	4.04 (3-5.5)	4.1 (3-5.5)	4 [3-5.5]	3.9 (3-5.4)	4 (3.2-5.1)	0.597	0.821
Neutro, x00 ⁵ /1 (p25/p75)	2 (1.8-8.1)	2(1.3-3.1)	2 (1.3-3.3)	19(13-5.1)	2(1.5-3.3)	0.839	0.566
Ph, s10%/1 {p25/p35	249 (168-147)	259 (172-156)	210 (146-311)	212 (154-314)	187 (115-277)	0.118	0.351
BM Blasts, % (p25/p75)	2 (1-8)	2 (1-3.5)	2 (0-3)	15(0-8.5)	2 (1-3)	0.031	0.881
PSS-R (VL & L)	#1.7%	89.7%	89.6%	81.7%	90.5%	0.381	0.778
isolated delliq abnormality	#1.1N	82.5%	85.9%	\$2.5%	90.3N	0.348	0.382
1045; medilen % (p25/p75)	23.4 (9-34.3)	NA	20.4 (5-34.3)	18.9(7.2-31.4)	40 (12.9-67.5)	NA	<0.000
97301 10170	20.8%	22.3%	15.2%	15.9%	13.5%	0.702	0.737
DWMT3A	18.4%	18.5%	17.7%	19.0%	12.5M	0.867	0.540
7172	14.3N	13.5%	16.5%	15.9%	11.0%	0.500	0.871
ASNLI	9.8%	10.0%	8.5%	9.5%	6.3%	0.758	0.680
CSWEIAL	6.5%	7.3%	10%	3.6%	0.0%	0.196	0.607
UK2	6.4%	6.2%	7.6%	4.8%	18.8%	0.754	0.059

gure 1. Risk of evolution to acute myeloid leukemia in MDS-del5q with TP53-wt, TP53-monoallelic and TP53-multihi

here was no significant differences in the risk to AVL evolution between 7P53-wt and TP53-monosile/ic MD5-del5q patients (p=0.2) (pher risk to AML evolution compared to MD8 del5q with TP53-monosile/ic mutations and MD8 del5q TP53-wt (p= 0.01)

Figure 1

https://doi.org/10.1182/blood-2023-179171